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Various models are used in the numerical analysis of structural elements for an intense 
pulsed effect. There is extensive use in the case of adiabatic approximation of an elasto- 
plastic flow model of the Prandtl-Reis type and the Wilkins method is used for its numerical 
realization [i, 2]. Recently on the basis of thermodynamic principles of solid mechanics 
there has been rapid development of models of solids with internal parameters of state by 
means of which deformation processes and so-called continuous failure are described (i[3-8], 
etc.). In models with internal parameters of state it is normal to suggest that failure 
occurs in the case when the value of some parameter reaches a critical magnitude [6, 9-13]. 
A simple version of this model (acoustic approximation) is obtained if it is assumed that 
the internal parameter only characterizes the process of continuous failure, i.e., damage ac- 
cumulation, and it does not affect the deformation process in the material since the internal 
parameter does not enter into the fundamental equations for the medium [9]. More complex 
models take account of the reciprocal effect of deformation processes, damage accumulation, 
and temperature effects [6]. In the present work on the basis of thermodynamic principles 
of solid mechanics a coherent model is built up for a damaged thermoelastoplastic body with 
internal parameters which is a development of the flow model [i, 2]; criteria are suggested 
for failure of limiting specific dissipation; use of the model is considered for describing 
spalling failure with impact of metal plates. 

i. Model of the Material. We introduce the following values: tensor components for 
stresses oij, strains sij, elastic s~j and plastic ~j strains (~j=~j@-~) ; specific (per 

unit mass) free energy F, internal energy U, and entropy ~, and also absolute temperature T, 
thermal flow q, density po, and structural parameter ~. Here it is assumed that m describes 
initiation and growth of damage for the material during deformation. 

We turn to an equation for internal energy written in the form of heat inflow: 

= (t/po)aCj~r --  (l/po) div q. ( 1.1 ) 

Here and subsequently a full stop above a symbol signifies a derivative with respect to time 
along the trajectory of a solid particle. 

We present the second law of thermodynamics in the form of a Clausius-Duhem inequality 

~ --(l/p0 ) div (q/T). ( 1 . 2 )  

By compar ing  ( 1 . 1 )  and ( 1 . 2 )  and chang ing  ove r  f rom i n t e r n a l  e n e r g y  t o  f r e e  e n e r g y  

F = U--NT, ( 1 . 3 )  

and from the Clausius-Duhem inequality we obtain 

t i q grad T ~, TI__/~ j~ 0" ( 1 . 4 )  
P00"~j8 ij DO T 

e 8p" considering that F is a function of the independent variables eij, ~, ~, and T, we arrive from 
(1.4) to 
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o i j  agi j  

I q grad T 
~o ~ - - - ~  0. 

oF 

( i . 5 )  

As shown in [3], from (1.5) it follows that 

OF 
o~j ~ p 0 0 ~ .  j ,  ~ - -  

and t h e n  ( 1 . 5 )  i s  t r a n s f o r m e d  t o  t h e  form 

OF 
or '  (1.6) 

- - o  OF'~ �9 OF �9 qgradr  ~ 0 ,  
d~-  oij '~ | e~J--9~ ~ ~  r " ( 1 . 7 )  

where d ~ O0T is a function of dissipation (~ is production of entropy). 

We turn again to Eq. (i.i) which by means of (1.3) may be written as 

�9 v t divq.  

By using (1.6) finally we obtain 

t _ _  OF ~ "ep.. OF " I divq. ( 1 . 8 )  

In thermal conductivity Eq. (1.8) we define entropy as a function of its independent 
variables s~j,a~, o, T For this we make the following simplifying assumptions. A. Strains 
are small: square terms in the expression for the strain tensor are ignored. B. Free energy is 
presented in the form of the sum of two terms: 

F -== F 1 @~j, (o, T)  --t- F2 (e~j, (o, T) .  ( 1 . 9 )  

The first of the relationships in (1.6) taking account of ( 1 . 9 )  gives 6ij==poOF1/Oe~j. Among 

the arguments of function F I there are no plastic strain tensor components, and therefore 
hypothesis (1.9) is equivalent to assuming that accumulation of plastic strain does not 
change the elastic properties of the material. C. Dissipation function d (1.7) is written 
as the sum of three non-negative terms, and in fact: 

�9 OF " q grad T 
d ~ , = t i j e ~ j ~ O ,  d ! = - - 9 o ~ O ~ > O  , d ~ = - -  T ~0 (1.i0) 

(d M is mechanical dissipation, df is dissipation of continual failure, d T is thermal dissipa- 
tion). Inaddition, we denote 

l i j  = Oij - -  poC)F/Oe~j .  (i.ii) 

Tensor tij is called the active stress tensor. It follows from (i. I0) and (I.Ii) that if 
free energy depends on plastic strain c~j,. then the process of energy dissipation is deter- 
mined not by true stresses oij, but by"active" stresses tij. Introduction of ~j into 

free energy makes it possible to model the strain anisotropy of the material which arises 

with plastic deformation. 

Concerning the dissipation of continuous failure it is assumed that 

- - P ~ 1 7 6  (1.12) 

776 



(A ~ 0 is a material parameter). It is noted that with A = const relationship (1.12) is the 
result of 0nsager theory [16]. 

Apart from free energy we introduce thermodynamic potential 

(1.13) 

Differentiation of (1.13) with respect to time taking account of (1.6) gives 

pO ~ " e -- Off' " O F  " 
= - - ~ s ~  Po~ ~r +Po~--iV ~ s - k  P o ~  ~ O~ij (1.14) 

We select an independent arguments of potential G 6i], e~, and T. From (1.14) we obtain 

e OF aG O G _ _  OF OG OF 

By using the hypotheses A to C adopted the expression for G may be presented in the form 

2~- -3K ~ 1 1 
- -  po G = ~ ~ + ~ ~ . ~  + 7 a v ~  ( r  - -  To) + 

(9 

P p r  j~ + - E e ~ + A  ~ & o + G  o(T) 
0 

( 1 . 1 6 )  

(=v, ~, and K are coefficients of volumetric expansion, shear modulus, and bulk compression 
modulus respectively). 

The specific heat capacity with constant stress c o = (JQ/dT)~ij Considering that 

= U--(I/p0)~jeii, U = G + Tq + (I/p0)~F~J, and assuming that the change in stresses equals 

dQ 
~( GnuTN- I O~,ie~) Then % T#Do/OT, where it was considered that as 

% 

zero, we have ~ p~ = 

av  t OG o " dq o follows from (1.16) (1.17) ~I=--~+~I0. ~10-- % T, and we designate o = ekk/3 
' ' f'o Po # Y '  = - a T -  

av" %T which by substituting in (1.8) we arrive We obtain a relationship ~ =~0~-~7 , 

at a thermal conductivity equation of the form 

PoCoT + r  T = t i d ~  + A~ 2 - -  div q. 

We a s s u m e  t h a t  m a t e r i a l  c h a r a c t e r i s t i c s  K and  ~ d e p e n d  on damage  p a r a m e t e r  w t h u s :  

(1.17) 

K = Ko(l -- o)), t~ ---- t~o(l -- (o) (1.18) 

(K 0 and D0 are bulk modulus and shear modulus of undamaged material which may depend on 
temperature, pressure, and other parameters [2]). Here it is assumed that ~ varies from 
zero in entirely undamaged material to one in totally damaged material in which the support- 
ing capacity equals zero. By using (1.15) and (1.16) we write 

o'=K0 Skh--av (T--T0)--~ a~ 
0 

(1.19) 

(S~d =S~j/(I--~), SiT = aii--o~ij are stress tensor deviator components, e~j~sq--y are 

strain tensor deviator components). In addition it is assumed that plastic flow is incom- 

possible: eP = 0. 
kk 

For material with characteristics (1.18) there is the following property. If effective t 
stress tensor aij___~id/(l--~) is introduced into consideration, then in relation to it set 
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of Eqs. (1.19) describes material behavior as it were without damage. This material may be 
considered as one whose mechanical properties do not change during deformation but are under 
the action of effective stresses o!.. Therefore it is natural to apply the same approaches 13 
to this material as are used for describing classical elastoplastic materials. Thus we use 
a model for elastoplastic flow of the Prandtl-Reis type [i, 2] 

where the symbol 7 signifies Yaumanov derivative of the tensor component; % is determined 

, �9 2 

from the Mises plasticity condition SqSq~] r~ ; I = 0 in an elastic region and I = 

t " t ~ 

3'a~ H (S~seij) in a region of plastic flow. Here Y is material yield strength; H(x) is 

Heavyside function. Taking account of strain anisotropy (which is provided by introducing 
active stress tensor tij [15]) the rule for flow and the Mises condition have the form 

r �9 t t 2 

(T~j) v ~- t~Tij ---- 2poe q. T i /h j  ~ -~ y2,  

p 

where  ~<; : S q  - -  9oOG/OePj = S~j -+- Fe~j, T~j : Tij/(l - -  o)). 

The process of damage accumulation is written by a kinetic equation of the Tuler-Butcher 
type [9] 

r : B (o '  - -  g , ) ' ~ H  (~ '  - -  ~ , )  

(B and m are material parameters). Presence of function H(x) is connected with the assumption 
that with values of tensile stress o below a certain threshold value o, ~ 0 damage does not 
appear in the material and it does not develop. 

We shall assume that the yield strength Y, shear modulus B0, and bulk compression K 0 
depend as follows on temperature, pressure, and other parameters of state (Steinberg-Guinan 
model [2]): 

Y = Yo (1 J- ~e~) '~ (1 - -  ba (9J9) ~/3 - -  h (T  - -  To) ) , 
p n Y o ( t J - ~ s u )  ~Ymax,  Yo ~-0 for T > T , ~ ,  

: Tmo(9o/9)2/~ exp (27o(i --  9o/9)), ~o = ~oo( l - -  b~ - -  

- -  h ( T  - -  T o ) )  

( 1 . 2 0 )  

(e p :V2e~ie[~ is plastic strain tensor intensity, ]'o, Ymax, ~oo, T,no, 6, n, h, b, ?o 

0 r c o n s t a n t s ) .  We a l s o  a s sume  t h a t  o , - - - - o , } / Y o .  

Thus ,  f u n d a m e n t a l  e q u a t i o n s  h a v e  t h e  fo rm 

are material 
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h ' 0~ 
o' = Ko ekk --av(T -- To) ---~ b-5-do) , 

\ 0 

~ ,  " , ,  2 
T~5~ j + Aco ~ - -  div q, 

' TiJ  Cf' -- G r  " r ~ = S i ; + r e / P s  -, " c ~ = ~ ,  l - -co '  
(1. .21) 

where material constants are in accordance with (1.20). 

2. Failure Criterion. As a criterion of failure we take the condition of reaching 
specific dissipation which for the material model in question is 

: t 

�9 ) D = ~1 Ti) e~j + Ar ~ -  q gradT r at, 
0 

(2.1) 

of some limiting value D,. This energy criterion for gailure makes it possible in principle 
to describe the process of failure both by the mechanism of microstructural damage accumula- 
tion which occurs for example with spalling failure in tensile waves (here the main contri- 
bution in (2.1) apart from the magnitude of mechanical dissipation T~je~/p , is made by the 

term A~2/p, i.e., the magnitude of continuous failure), and by shear arising for example in 
problems of piercing an obstacle of finite thickness by a striker with a flat leading sec- 
tion. As is well known, in the least case a narrow zone of intense adiabatic shear develops 
in the obstacle in areas of stress concentration. The work of plastic deformation is almost 
entirely converted into heat which due to the high local strain rates cannot propagate over 
a marked distance from the zone of developed plastic strain. As a result of this the tempera- 
ture in this zone increases, considerable temperature gradients develop, which causes addi- 
tional plastic flow and concentration of local plastic strains, and it leads finally to punch- 
ing of a "plug" from the obstacle. With failure by shear a specific contribution in (2.1) 
is given by the terms T~je~/p and -q grad T/pT. The latter, which is the magnitude of ther- 
mal dissipation, for the Fourier thermal conductivity rule q = -m grad T has the form K(grad 
T ) 2 / o T .  

It is noted that different empirical energy criteria are often used in order to describe 
failure both with creep [16], failure by shear [17], with spalling [18, 19], and as a single 
failure criterion for the mechanism of shear and separation [20], and it give satisfactory 
results. 

In [16] a condition of failure with creep is reaching dissipation energy 

t 

A = I c~iJrlifl t ( 2 .2  ) 
0 

of some limiting value A... (Nij are creep strain rate tensor components), in [17] with numer- 
ical modelling of the problem for piercing of a "plug" from an obstacle use is made of a cri- 
terion of limiting specific work of plastic deformation 

t 

I t  "p . 
= S~js~jdt ~ Ap, Ap , "F 

0 

( 2 . 3 )  

and in [18-20] use is made of a Huber-Mises-~enk criterion of limiting specific shape change 
energy 

t 

Us ,I I �9 -. = ~ S~jeijdt ~ 5 ~s. 
0 

(2.4) 
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It can be seen that in the case of simplifying model (1.21) (not introducing internal 
parameters of state m and gP. and ignoring thermal effects) criterion (2.1) conforms with 

13 
(2.3) and it is little different from (2.2) and (2.4). However, failure criteria for specif- 
ic dissipation (2.1) have a clear thermodynamic basis which it is not possible to say about 

empirical criteria (2.2)-(2.4). 

3. Evaluation of the model was accomplished in solving the problem of plane impact of 

two plates for experimental conditions in [21]. 

Since the thickness of the plates is small compared with their dimensions and the char- 
acteristic time of the process is ~2-5 psec [21] (the time for some travel of an elastic 
wave through the thickness of the target plate), the problem of impact was solved in a uni- 
dimensional mathematical arrangement (uniaxial deformed state) and an adiabatic approxima- 
tion (div q= 0). Here the equations of continuity, pulse, and internal energy are written 
in a Cartesian coordinate system Oxyz (axis x is perpendicular to the surfaces of the plates) 

as follows: 

~/p = - ~ ,  v =  OIp)O(S + o)/ox,  p~o~ + ~ v ~ r  = (3t2)s~p + a ~ ' .  

Here v v x is velocity: e = exx = Ov/ax; "gP--~P = -- x~: ; S = Sxx is stress deviator tensor component; 

the rest of the variables conform with those introduced previously. In addition, strain 
anisotropy of the material is ignored (F = 0) and it is considered that ~Sy~ ----Szz------S~x/2 ' 

�9 " ~ P / 2  = = O .  e ~ y = e ~ z = - -  x ~ / ,  s i n c e  S k k  0 a n d  "p  
e k k  

b' t(o ~ �9 t . o g ,  ~, 4 s '  ~ < a r ,  = - - ~ V r - - a ( O a -  d- , + ~ S = y , U o e ,  I I 

(o B (e '  m ' = - ~,) H (o --  ~,). 

Material characteristics Y, Do, K0 are found from (1.20). Failure is analyzed on the basis 

of limiting specific dissipation (2.1). 
o 

There are the following initial conditions: u = V 0, p = P01, o = S =0, T = T o (--h I ~x~0) 
o 

for the striker and v = 0, p = P0~, ~ = S = 0, T = T 0 (0~x ~h~) for the target. Here 
o 

x ~ xlt=0 is initial Lagrange coordinate; h I, h 2 are striker and target thickness. Bound- 
o o 

ary conditions at the free surfaces of the plates (x =--h I, x =h2): o q-N = 0. Boundary con- 

ditions at the contact surface x = 0:v + = v-,(o + S) + = (o+N) for compressive forces (o + S) + 

(o + S)-<0 and conditions for the free surfaces o + S = 0 in the opposite case. 
�9 o 

The same as at the contact surface x = 0 boundary conditions are set at the surfaces 
of spalling failure introduced during the calculation in sections of the target where failure 

criterion (2.1) is fulfilled. 

The problem is solved in a Lagrange calculation grid by an explicit finite difference 
scheme [i]. An algorithm for constructing surfaces of spalling failure in a plate based on 
the procedure of rebuilding the Lagrange grid in the failure surface and the procedure for 
converting the parameters of state to a new grid are given in [18], and the method for numer- 
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ical realization of boundary conditions at the contact surface of the plates and the failure 
surface is given in [221. 

The striker material is aluminum, and the obstacle is titanium [21]. Material character- 
istics are taken from [2]: for aluminum P0 = 2780 kg/m 3, K 0 = 79.06 GPa, P0 = 27.6 GPa, Y0 = 
0.29 GPa. Ymax = 0.68 GPa, Tm0 = 1220 K, ~ = 125, b = 0.065 GPa -z, n = 0.i, h = 6.2"10 -4 
K-I, ~v = 6-72"i0-s K-Z, Y0 = 1.97. c o = 924.3 J/(kg-K),iK =230 W/(m'K); for titanium P0 = 

4530 kg/m 3, K 0 = 123.4 GPa, P0 = 43.4 tGPa, Y0 = 0.71 GPa, Ymax = 1.45 GPa, Tm0 = 2260 K, ~ = 
780, b = 0.0115 GPa -z, w = 0.065, h = 6.2"10 -4 K -z, ~v = 2"52"10-5 K-Z, 70 = 1.23, c o = 

520.7 J/(kg'K), K = 20 W/(m'K). Striker thickness h I = 2 m~n, target thickness h 2 = i0 mm. 
Parameters of the model B, A, o,, and m are selected from comparison of the results in [21] 
with calculations: for aluminum B = 1.034 "i0 -a (Pa.sec) -I A = 193.3 Pa'sec, m = i, o. ~ = 
0.145 GPa: for titanium B = 4.225-10 -4 (Pa.sec) -I, A = 591.7 Pa'sec, m = i, o$= = 1.065 GPa. 

Shown in Fig. 1 is the dependence of the velocity of the rear surface of the target 

m=vl~=h 2 on time for striker velocities V 0 = 660 (curve i) and 1900 m/sec (curve 2, solid 

lines are the experiment [21], broken lines are the calculation). In calculations for titan- 

ium use was made of the value of limiting specific dissipation D, = 75 kJ/kg. As can be seen 

from Fig. i, the calculated results are in good agreement with experiments both for the time 
of forming spalled plates, their thickness, and with respect to spalling velocities. Diverg- 
ence in the calculated and experimental values of the amplitude of elastic precursors is 
apparently connected with the fact that in the Shteinberg-Guinan model (1.20) no considera- 
tion is given in an explicit way to the dependece of material yield strength on strain rate 
which affects the very initial stage of the analysis in forming a compression wave propagat- 
ing through the target. 

Presented in Figs. 2 and 3 are the distribution of values of specific dissipation and 
relative specific shape change energy 

U s = J T S~j ~jdt 
0 

at the instants of fulfilling failure criterion (2.1) for impact velocities V 0 = 660 and 1900 
m/sec, respectively. It can be seen that the maximum U' s is reached in those sections where 
the maximum specific dissipation D is achieved, although as a failure criterion the value of 

' increases markedly with an increase in V 0 U' s cannot be selected since the maximum U s 

Shown in Figs. 4 and 5 are the distribution of damage parameter ~ and strain g at the 
instant of fulfilling criterion (2.1) for V 0 = 660 and 1900 m/sec. Maxima for ~ and s are 
reached in the same section as for the maximum D. However, with an increase in V ~ thel 
limiting value of m decreases markedly, and this means that it cannot serve as a criterion 
for spalling failure. Maximum tensile strains E in sections of failure for V 0 = 660 and 
1900 m/sec almost coincide. 

Thus, a coherent model is built up for a damaged thermoelastoplastic body with internal 
parameters of state. Criteria are suggested for failure by limiting specific dissipation 
which make it possible in principle to describe failure under conditions of a complex stressed 
state both by a shear mechanism and by a separation mechanism as a result of accumulation 
of damage parameters in tensile areas which affect the stressed state. On the example of 
solving the problem for plane impact of plates it is shown that the model makes it possible 
to predict correctly the main features of the process and failure criteria suitable for de- 
scribing spalling failure. 
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